Compact adaptive optics line scanning ophthalmoscope.

نویسندگان

  • Mircea Mujat
  • R Daniel Ferguson
  • Nicusor Iftimia
  • Daniel X Hammer
چکیده

We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning ophthalmoscope (LSO). The bench-top AO-LSO instrument significantly reduces the size, complexity, and cost of research AO scanning laser ophthalmoscopes (AOSLOs), for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AO-LSO produces high resolution retinal images with only one moving part and a significantly reduced instrument footprint and number of optical components. The AO-LSO has a moderate field of view (5.5 deg), which allows montages of the macula or other targets to be obtained more quickly and efficiently. In a preliminary human subjects investigation, photoreceptors could be resolved and counted within approximately 0.5 mm of the fovea. Photoreceptor counts matched closely to previously reported histology. The capillaries surrounding the foveal avascular zone could be resolved, as well as cells flowing within them. Individual nerve fiber bundles could be resolved, especially near the optic nerve head, as well as other structures such as the lamina cribrosa. In addition to instrument design, fabrication, and testing, software algorithms were developed for automated image registration and cone counting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Adaptive Optics Line Scanning Laser Ophthalmoscope

We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning laser ophthalmoscope (LSLO). The bench-top AO-LSLO instrument significantly reduces the size, complexity, and cost of research AOSLOs, for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AOLSLO produces high resolution retinal images with only one moving...

متن کامل

Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope

We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be ...

متن کامل

Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and posi...

متن کامل

MEMS-based adaptive optics scanning laser ophthalmoscopy.

We have developed a compact, robust adaptive optics (AO) scanning laser ophthalmoscope using a microelectromechanical (MEMS) deformable mirror (DM). Facilitated with a Shack-Hartmann wavefront sensor, the MEMS-DM-based AO operates a closed-loop modal wave aberration correction for the human eye and reduces wave aberrations in most eyes to below 0.1 microm rms. Lateral resolution is enhanced, an...

متن کامل

Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.

A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2009